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Abstract. While numerically solving a problem initially formulated on an unbounded domain, one typically
truncates this domain, which necessitates setting the arti�cial boundary conditions (ABC's) at the newly formed
external boundary. The issue of setting the ABC's appears to be most signi�cant in many areas of scienti�c comput-
ing, for example, in problems originating from acoustics, electrodynamics, solid mechanics, and 
uid dynamics. In
particular, in computational 
uid dynamics (where external problems present a wide class of practically important
formulations) the proper treatment of external boundaries may have a profound impact on the overall quality and
performance of numerical algorithms.

Most of the currently used techniques for setting the ABC's can basically be classi�ed into two groups. The
methods from the �rst group (global ABC's) usually provide high accuracy and robustness of the numerical procedure
but often appear to be fairly cumbersome and (computationally) expensive. The methods from the second group
(local ABC's) are, as a rule, algorithmically simple, numerically cheap, and geometrically universal; however, they
usually lack accuracy of computations. In this paper we �rst present a survey and provide a comparative assessment
of di�erent existing methods for constructing the ABC's. Then, we describe a relatively new ABC's technique of ours
and review the corresponding results. This new technique, in our opinion, is currently one of the most promising in
the �eld. It enables one to construct such ABC's that combine the advantages relevant to the two aforementioned
classes of existing methods.

Our approach is based on application of the di�erence potentials method attributable to V. S. Ryaben'kii. This
approach allows us to obtain highly accurate ABC's in the form of certain (nonlocal) boundary operator equations.
The operators involved are analogous to the pseudodi�erential boundary projections �rst introduced by A. P. Calderon
and then also studied by R. T. Seeley. The apparatus of the boundary pseudodi�erential equations, which has formerly
been used mostly in the qualitative theory of integral equations and PDE's, is now e�ectively employed for developing
numerical methods in the di�erent �elds of scienti�c computing.
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1. Introduction. Arti�cial boundary conditions (ABC's) furnish a widely used approach for
the numerical treatment of boundary-value problems initially formulated on unbounded domains.
These boundary conditions are typically set at the external boundary of a �nite computational
domain once the latter is obtained from the original unbounded domain by means of truncation.
Implementation of the ABC's enables completion of the \truncated problem" and, therefore, makes
this problem available for solution on the computer.

For almost any problem formulated on an unbounded domain, there are, generally speaking,
many di�erent ways of closing its truncated counterpart. In other words, the choice of the ABC's
is never unique. Clearly, the minimal necessary requirement of ABC's is to ensure the solvability
of truncated problem. If, however, we restrict ourselves to this requirement only, then we cannot
guarantee that the solution found inside the computational domain will be anywhere close to the
corresponding fragment of the solution to the original (in�nite-domain) problem. Therefore, we
must additionally require of the ABC's that the two solutions be in a certain sense close to each
other on the truncated domain. An ideal case here would obviously be an exact coincidence of
these two solutions, which leads us to formulating the concept of exact ABC's. Namely, we will
refer to the ABC's as being exact if one can complement the solution calculated inside the �nite
computational domain to its in�nite exterior so that the original problem is solved. The concept
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of exact ABC's appears to be useful for the theoretical analysis of in�nite-domain problems.
To provide a simple one-dimensional (1D) example of exact ABC's, we consider a half-line

problem with the compactly supported right-hand side (RHS):

d2u

dx2
� �2u = f; x � 0;

supp f(x) � [0; X);

(1.1a)

u(0) = 0;(1.1b)

u(x) �! 0; as x �! +1:(1.1c)

Equation (1.1a) is homogeneous for x � X ; therefore, it has (for x � X) two eigensolutions.
The �rst eigensolution vanishes as x �! +1 and the second one in�nitely grows as x �! +1.
Boundary condition (1.1c) can be met i� the increasing mode (eigensolution) u(1)(x) = ej�jx does
not contribute to the solution of (1.1a) on the entire semi-in�nite interval [X; +1). To prohibit
this growing mode and to admit only the decaying one, u(2)(x) = e�j�jx, we use the following
�rst-order homogeneous di�erential relation:

du

dx

����
x=X

+ j�ju

����
x=X

= 0;(1.2)

which obviously provides us a desirable exact ABC at the arti�cial boundary x = X . Let us
emphasize that relation (1.2) exactly transfers boundary condition (1.1c) from in�nity to the �nite
boundary x = X . In other words, (1.2) adequately takes into account the structure of the solution
to (1.1) from outside the �nite interval [0; X ] without explicitly calculating this solution.

Although the above example provides some understanding of exact ABC's, it is still not com-
prehensive because of its 1D nature. Therefore, let us consider the following two-dimensional (2D)
problem for the Poisson equation (see also [1]):
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(1.3a)

u(r; �) �! 0; as r �! +1:(1.3b)

Again, equation (1.3a) is homogeneous for r � R0. Fourier transforming (1.3a) with respect to �
for r � R0, we obtain
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To satisfy (1.3b), we must prohibit the increasing eigensolution of (1.4), û
(1)
k (r) = rjkj, on the

entire semi-in�nite interval [R0; +1) for k = �1;�2; . . . and allow there only the decaying mode

û
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k (r) = r�jkj. For k = 0, we must prohibit both eigensolutions of (1.4), û
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û
(2)
0 = lnr. Therefore, the following countable set of relations
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ARTIFICIAL BOUNDARY CONDITIONS 3

û0(R0) = 0;(1.5b)

constitutes here the exact ABC's at the arti�cial boundary r = R0. One can easily make sure that
boundary conditions (1.5) are spatially nonlocal (in the original variables). Indeed, since (1.5a)
contains an absolute value of the wavenumber k, an inverse Fourier transform of (1.5) yields a
nonlocal expression with some pseudodi�erential operator (	DO).

We emphasize here that the situation illustrated in the last example is fairly general. For many
di�erent problems, including those that originate from applications (e.g., from continuous media
mechanics or from electrodynamics), the exact ABC's are nonlocal (except in some trivial, e.g., 1D,
cases). In fact, the nonlocal character is one of the most essential features of exact ABC's. Another
essential feature is that in a vast majority of cases such boundary conditions can be derived easily
only for some particular geometries. Indeed, returning to the second example above we see that if
the shape of arti�cial boundary were not circular, then the direct implementation of the Fourier
transform would be impossible.

We will now brie
y survey some work on ABC's conducted by di�erent authors over the recent
years. First, we will concentrate on e�orts to construct and numerically implement the exact
ABC's. As one will easily see, the main tool for constructing such boundary conditions is integral
transformations (e.g., Fourier and/or Laplace); in so doing, the arti�cial boundary should have
some regular shape (e.g., linear, circular, elliptic, etc.). It is also important to mention that this
group of methods applies, generally speaking, only to linear problems. Therefore, while discussing
the exact boundary conditions we mean exactness for the linear formulation. If, however, the
original problem is nonlinear, then one can often linearize it under certain conditions. For example,
linearization in the far �eld is a common approach in 
uid dynamics. If this is really the case, we
will retain the term \exact ABC", assuming exactness within the accuracy of linearization.

In [2, 3, 4], Engquist and Majda develop the ABC's for some time-dependent problems, in
particular, for wave propagation problems (wave equation, �rst-order hyperbolic systems) and
for linearized potential transonic 
ows. Their approach is based on representing the solution as a
superposition of waves and excluding all incoming waves from the solution at the arti�cial boundary.
This is done exactly, using an apparatus of integral (Fourier) transformations. Note, ABC's that
employ an idea of prohibiting the incoming waves near the arti�cial boundary (such waves may also
be interpreted as re
ected ones) are frequently called non-re
ecting boundary conditions (NRBC's).
The ABC's [2, 3, 4] are based on analyzing the dispersion relations for the waves that contribute to
the solution and on constructing special dispersion relations that correspond only to the outgoing
waves to be solely left in the solution (as in the second example above, we select only the decaying
modes in transformed space). Since these special one-way dispersion relations contain non-integer
powers, ABC's [2, 3, 4] in the physical variables are formulated using 	DO's, i.e., they appear to
be nonlocal in both space and time.

Gustafsson [5] analyzes another hyperbolic problem that is more complicated from the stand-
point of constructing the ABC's. Namely, the support of initial data is no longer concentrated
inside the computational domain (as in [2, 3, 4]) but is also permitted to spread beyond the ar-
ti�cial boundary. Implementation of the Laplace transform in time and the Fourier transform in
space yields in this case a nonhomogeneous (unlike [2, 3]) nonlocal exact ABC at the plane arti�cial
boundary. Note, both boundary conditions in [2, 3, 4] and [5] are then approximated by some local
relations for more computational convenience (see below).

Sofronov [6] considers an example of noticeable interest for the wave equation; namely, he
constructs the exact ABC's in three dimensions at the spherical arti�cial boundary. The approach
of [6] is based on using the Laplace transform in time and expanding the solution in space in
terms of spherical functions. For the �nite-di�erence formulation, standard spherical functions



4 S. V. TSYNKOV

are substituted by a special �nite-dimensional orthonormal basis called the di�erence spherical
functions [7].

Note, all above-mentioned techniques for the wave equation (see [2, 3, 4, 5, 6]) have strict
limitations on the shape of the arti�cial boundary; although, the author of [6], for example, proposes
some recipes for possible weakening of these requirements.

Hagstrom and Keller [8] suggest to consider the exact ABC's as a characterization of data
at the arti�cial boundary in terms of belonging to certain admissible subspaces. The latter are
specially de�ned to ensure the solvability of the exterior problem (i.e., the one formulated outside
the computational domain) in an initially prescribed class of functions, e.g., bounded or vanishing at
in�nity. (Note, both the 1D and 2D examples above provide this type of classi�cation by selecting
only the decaying modes as x �! 1 or r �! 1; see (1.2) and (1.5), respectively.) For some
problems formulated on cylinders, Hagstrom and Keller calculate these admissible subspaces on
the plane arti�cial boundary normal to the cylinder element. They assume that the coe�cients
of partial di�erential equations (PDE's) in the far �eld depend only on the transversal but not
the longitudinal coordinate and use the separation of variables based on expanding the solution in
terms of transversal eigenfunctions. The latter appear to be the Fourier harmonics for the simplest
case of constant coe�cients. In later work, Hagstrom [9, 10] and Hagstrom and Keller [11] further
develop the technique introduced in [8] and extend its applicability.

Givoli and Keller [12] propose the construction of (nonlocal) exact ABC's for the Laplace
equation and for some problems in elasticity. Their boundary conditions are based on the so-called
Dirichlet-to-Neumann maps, which express the normal derivative of the solution at the arti�cial
boundary in terms of boundary values of the solution itself. These maps (which sometimes are also
called the Poincar�e-Steklov operators, see, e.g., [13]) are calculated in [12] analytically (using Fourier
transform) for the circular and spherical arti�cial boundaries. In [14], Givoli and Vigdergauz use an
apparatus of the Dirichlet-to-Neumann maps to construct the ABC's for the Helmholtz equation
and for the elastostatics system; the arti�cial boundary in [14] is composed of a semi-circle and
two semi-in�nite straight lines, which is a typical geometric setup for geophysics. In [15], an
approach based on calculation of the Dirichlet-to-Neumann maps was extended by Givoli to treat
time-dependent problems. The method of [15] is based on the analysis of the \stationary" system
that arises on the upper time level when one integrates the time-dependent problem by a certain
implicit method. Boundary conditions [15] are nonlocal (exact) in space and local in time. Finally,
Givoli and Cohen [16] analyze an essentially time-dependent problem for the wave equation and
for the elastodynamics system. From the standpoint of constructing exact ABC's, time-dependent
problems are generally much more di�cult to handle than stationary ones. Indeed, in the time-
dependent case the exact ABC's generally appear to be nonlocal in both space and time (see, e.g.,
[2, 3]). This nonlocality may cause severe computational problems, mainly due to the constantly
increasing amount of past information the numerical method must store in memory as the solution
is advanced in time. However, for particular classes of problems, e.g., for hyperbolic systems with
an odd number of space dimensions, one can use the existence of the lacunas (some explanation of
this concept is given in Section 3) and limit the required amount of past information by some �xed
value. This circumstance was e�ectively used by the authors of [16]. Moreover, since the Kircho�
integrals are used in [16] for constructing the ABC's, those geometric restrictions (on the shape of
arti�cial boundary) that usually apply in practical calculation of the nonlocal boundary conditions
(see, e.g., [2, 3, 4, 5, 6]) are not encountered. On the other hand, calculation of the Kircho� integrals
has its own limitations, namely, it requires an explicit knowledge of the fundamental solutions. We
also note that the possibility of using the lacunas to e�ectively reduce the required computational
e�ort when calculating the exact ABC's for time-dependent problems was earlier pointed out by
Ryaben'kii [17].

Gustafsson [18] and Ferm and Gustafsson [19] investigate an inviscid 
ow of a compressible gas
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in a duct with parallel walls. Linearizing the stationary Euler equations in the far �eld and Fourier
transforming these equations in the cross-stream direction, they obtain an exact nonlocal ABC
at the straight out
ow boundary normal to the duct. The ABC's [19] use the integral principle
of conservation of mass and ensure the downstream boundedness of the solution up to in�nity.
The authors of [19] also justify the well-posedness of the corresponding problem if the boundary
conditions [19] are directly used to treat the time-dependent case. In [20], Ferm modi�es the above
technique and obtains nonlocal ABC's for both in
ow and out
ow boundaries in the channel; these
boundaries are again the segments of a straight line. Moreover, an Engquist-Halpern approach [21]
is implemented in [20] to accelerate convergence of the pseudo-time iterations to a steady state.
The technique of [21] by Engquist and Halpern generally provides far-�eld boundary conditions for
hyperbolic PDE's. The idea is to combine exact ABC's for the spatial part of the corresponding
di�erential operator with some NRBC's that make the arti�cial boundary transparent for outgoing
waves. Numerical experiments by Ferm [20] corroborate that the Engquist-Halpern technique of
[21] implemented on the basis of exact ABC's for the linearized stationary Euler equations can
signi�cantly improve the convergence rate of pseudo-time iterations for duct 
ow problems. In [22],
Ferm proposes an analogous (to [20]) approach to construct the exact ABC's at the elliptic arti�cial
boundary for inviscid compressible external 
ow problems. In [23], he modi�es the approach of
[22] to accelerate the convergence of pseudo-time iterations to steady state; since it turns out that
the Engquist-Halpern technique of [21] is not as e�ective for external 
ows [23] as it is for 
ows in
the duct [20], the modi�cation proposed in [23] di�ers from that from [20] and is based on a slight
perturbation of the free-stream Mach number.

As mentioned in [20, 23], when solving a steady-state problem by pseudo-time iterations the
direct implementation of stationary exact ABC's may result in a relatively slow convergence. There-
fore, special acceleration techniques (see [20, 23]) are required to obtain an algorithm that would at
the same time be highly accurate (exact ABC's) and computationally e�ective (rapid convergence).
However, it is very interesting to mention that when implemented along with a multigrid iteration
procedure for the Euler equations (see Ferm [24]), nonlocal ABC's [22] no longer slow down the con-
vergence and therefore, do not require any additional acceleration technique (as in [23]). According
to Ferm [24], the number of multigrid cycles required for reducing the initial error by a prescribed
factor appears to be approximately the same for both ABC's [22] and some local characteristic
NRBC's (to be described below). Our own computational experience [1] supports and expands
on the above-mentioned results. Namely, a direct combined implementation of stationary exact
nonlocal ABC's [25] (see also [1]) and the multigrid iteration procedure [26, 27, 28] for integrating
the Navier-Stokes equations results in a drastic convergence acceleration (sometimes by a factor of
3) in comparison with some standard local NRBC's. Boundary conditions [25] are constructed on
the basis of the di�erence potentials method (DPM) proposed by Ryaben'kii [29, 30]; sections 2
and 3 below are devoted entirely to the analysis of this approach.

In [31], Verho�, Stookesberry, and Agrawal construct ABC's for inviscid compressible external

ow computations. An interesting feature of this approach is that the Euler equations are linearized
in the far �eld against the constant-pressure background; however, a special change of variables
allows the nonlinear thermodynamic relations to be retained. This enables one to explicitly take
into account entropy-wake solutions (i.e., rotational e�ects) that are relevant to inviscid treatment
of the far �eld. Again, the Fourier transform (combined with a certain iteration technique) is used
to solve the far-�eld equations and to obtain the ABC's at the C-type arti�cial boundary that is
composed of parabolic (in
ow) and linear (out
ow) segments. In [32], Verho� and Stookesberry
extend the above approach to duct problems, and in [33] Verho� uses an analogous technique to
treat O-type con�gurations for circular arti�cial boundaries.

Among other papers devoted to constructing the (nonlocal) exact ABC's, we mention work by
Fix and Marin [34], in which the authors solve the Helmholtz equation in an axially symmetric
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duct and construct the exact ABC's on its lateral boundary expanding the solution in terms of
the trigonometric and Hankel functions; work by Zorumski, Watson, and Hodge [35], and work by
Hodge, Zorumski, and Watson [36], in which the exact ABC's at the plane transversal arti�cial
boundary are developed (again, using the separation of variables) for the Helmholtz equation in a
semi-in�nite rectangular constant-section duct; work by Watson and Zorumski [37], in which the
method of [35, 36] is extended to treat 1D time-periodic duct acoustic phenomena described by the
linearized Euler equations in the far �eld; and work by Jiang and Wong [38], in which an exact
NRBC containing 	DO is obtained at the plane arti�cial boundary for a general second-order
hyperbolic equation, provided that the corresponding dispersion relation is known (the technique
in [38] is analogous to that in [2, 3]). Nataf [39] calculates an external incompressible viscous 
ow
past a �nite body using the vorticity{stream function formulation of the Navier-Stokes equations.
The linearized equations are solved outside the rectangular computational domain with the help of
separation of variables. The resulting solution is then used to construct the exact nonlocal ABC's
for the Poisson equation that describes the far-�eld stream function. The boundary conditions for
vorticity used in [39] are local; they are proposed by Halpern in [40]. Note, the far-�eld vorticity is
described by the linear advection-di�usion equation; the exact ABC's for this equation are derived
in [40] using the cross-stream Fourier transform; then these boundary conditions are approximated
by some local relations (see below).

Clearly, the main advantage of using the exact ABC's for computations is the high accuracy
of the results. This statement is corroborated in many of the previously mentioned papers and
generally remains true even when the exactness is regarded only within the accuracy of linearization.
However, in reality the exact ABC's can be achieved in numerical practice only rarely. A few
reasons account for that. First, as could be seen from most of the papers cited above, the main
apparatus used for obtaining the exact ABC's is the integral transforms, which severely limits the
class of admissible arti�cial boundaries. In practice, such geometric limitations often appear to be
unacceptable since the arti�cial boundaries are typically de�ned by the discretization, i.e., by the
grid, used for each speci�c case. As a rule, the grid is generated to re
ect some essential geometric
elements of the speci�c problem, for example, it can be �tted to the (inner) solid boundary. In
so doing, the shape of the (external) arti�cial boundary may be rather complicated and cannot
be easily modi�ed for the convenience of setting the ABC's. Second, even for those cases in
which the exact ABC's can be theoretically obtained, their practical implementation may encounter
serious di�culties, mostly because of the considerable amount of computer resources (CPU time and
memory) associated with the calculation of integral transforms. The corresponding requirements
may still be reasonable for the steady-state problems but usually become too high for the time-
dependent ones.

These arguments justify numerous attempts by di�erent authors to construct approximate
local ABC's. One widely used approach is simply to develop local approximations to the previously
derived exact ABC's. As mentioned above, the nonlocality is usually caused by the fact that exact
boundary conditions in the transformed space contain some special expressions, such as absolute
values (see (1.5a)) or radicals (the latter are relevant to the one-way dispersion relations in the
wave propagation problems). Basically, each one of these special expressions is a symbol of the
	DO that arises after the inverse transform. If one develops some rational (e.g., Taylor or Pad�e)
approximation to such a symbol, then the resulting boundary condition in the physical variables
acquires the form of a certain di�erential relation, i.e., it becomes local. The idea of constructing
rational approximations to the symbols of 	DO's was implemented by many authors, e.g., Engquist
and Majda [2, 3, 4], Gustafsson [5], Jiang and Wong [38], Halpern [40]; as well as Jin and Braza
[41] for the incompressible shear 
ows calculation, Blaschak and Kriegsmann [42] for the Maxwell
equations (more precisely, for the Maxwell equations inside the computational domain coupled with
the wave equation in its exterior), Kr�oner [43] for the linearized Euler equations, and Johnsen and
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Lynch [44] for the shallow water problems. Note, in the work of Johnsen and Lynch [44], the ABC's
are obtained on the basis of the Klein-Gordon equation, which describes the dispersive waves; the
case of dispersive waves is also analyzed by Higdon in [45].

Obviously, the ABC's obtained using rational approximations to the symbols of 	DO's have
the same geometric restrictions as the original nonlocal ABC's. However, the new feature, namely,
the locality of approximate ABC's, presents a major advantage for numerics.

The di�erence between nonlocal ABC's and their local approximations can be considered in
several di�erent ways. Of course, the �rst question arising here is the question of convergence.
A rigorous analysis of the convergence of local approximations to the corresponding 	DO's is
provided by Hagstrom [46]. In particular, he shows that the local approximations used by Engquist
and Majda [2] do converge to the corresponding 	DO's over �nite time intervals. Another useful
approach is proposed by Higdon [47] for wave propagation problems. Namely, he shows that certain
rational approximations to the corresponding 	DO's can be factorized so that the resulting local
ABC appears to be exact only for the waves with some speci�c incident angles (rather than for
all waves, as in the case of exact ABC's). Higdon's factorization result was further generalized
by Jiang and Wong [38]. We should also mention that the ABC's by Higdon [47] are constructed
directly for the discrete formulation of the problem, on the basis of the dispersion relation for the
�nite-di�erence scheme. This eliminates one step from the general numerical procedure, namely,
the need to discretize the continuous boundary conditions.

An alternative approach to approximating the exact ABC's consists of retaining only a few
leading terms in the far-�eld asymptotic expansion of the solution and then using the obtained
truncated expansion to set the ABC's. This technique may essentially reduce the required compu-
tational e�ort in comparison with the cost of the original exact ABC's. The idea of the above type
was employed by Sa and Chang [48] to set the ABC's for vorticity when integrating the incompress-
ible Navier-Stokes equations around a cylinder. Burkhart [49] and Burkhart et al. [50] derive an
asymptotic expansion for the �nite-di�erence fundamental solution of the three-dimensional Laplace
operator on a Cartesian grid and then use a few leading terms of this expansion to set the ABC's
for an external 
ow problem that is solved within the full-potential framework. Wubs, Boerstoel,
and Van der Wees [51] use a Fourier representation of the far-�eld solution to the Laplace equation
(see (1.4)) to calculate a potential 
ow around an airfoil. The ABC's [51] are again derived from
the �rst few leading terms of the expansion; as the arti�cial boundary approaches the airfoil, more
terms are required to maintain the accuracy. We also mention here the earlier work of Thomas and
Salas [52], in which only one leading term of the far-�eld potential representation is retained; this
term corresponds to the point-vortex model.

Except for approximating the exact ABC's, there are, of course, independent techniques for
constructing the approximate local ABC's. In particular, the approach introduced by Bayliss and
Turkel [53, 54, 55] and Bayliss, Gunzburger, and Turkel [56] is also based on using the far-�eld
asymptotic expansion of the solution. However, the authors do not directly use this expansion to
set the ABC's but construct special local di�erential relations that annihilate a certain number
of leading terms in the aforementioned expansion. Being applied at the arti�cial boundary, these
relations provide some local ABC's. It is interesting to mention that sometimes local ABC's [53, 54,
55, 56] may coincide with those obtained by means of rational approximation to the 	DO symbols.
We also note that an apparatus of asymptotic expansions for constructing the approximate ABC's
was extensively used by Hagstrom [9, 10], Hagstrom and Keller [11], Hagstrom and Hariharan [57],
and Hagstrom [58].

Basically, both above-mentioned approaches to constructing local ABC's (the one based on
rational approximation to the 	DO symbols and the one based on asymptotic expansion of the
solution) provide an essential simpli�cation of the numerical algorithm compared with the direct
implementation of nonlocal ABC's, as well as a substantial reduction in the required computer e�ort.
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As concerns the accuracy of computations, it generally improves as the approximate conditions
approach the exact ones. However, one restriction, namely, the requirement that the arti�cial
boundary be of some simple shape, still holds here. Moreover, many authors mention that usage
of the approximate local ABC's may poorly a�ect well-posedness of the problem. In particular,
certain types of rational approximations to the 	DO symbols may lead to instabilities, whereas
some other approximations provide a stable truncated problem. Engquist and Majda [3] give some
examples of both stable and unstable local ABC's. Trefethen and Halpern [59] investigate and
compare di�erent ways of approximating the symbol of the 	DO by a rational function (Pad�e,
Chebyshev, least-squares) and characterize stability in terms of algebraic properties of the rational
approximant (locations and multiplicities of poles and zeros). For the case of hyperbolic systems
with non-zero initial data outside the computational domain, the question of well-posedness of the
truncated problem was studied by Gustafsson in [5] and more extensively in [60].

Before proceeding to the description of some purely local approximate approaches, let us men-
tion here the so-called perfectly matched layer technique [61] by Berenger. In a sense, this technique
occupies an intermediate position between local and nonlocal methods. The idea is to surround the
computational domain by a �nite-thickness layer of a special model medium with such properties
that the outgoing electromagnetic wave rapidly attenuates in this layer. The aforementioned spe-
cial medium is matched to a vacuum so that the boundary produces no re
ection for any incident
wave. On one hand, the approach of [61] is local since it does not include any global relations along
the boundary; on the other hand, it is nonlocal since it requires enlargement of the computational
domain. (In this sense, the treatment of the far �eld proposed in [61] cannot be exactly called the
boundary conditions.) Geometrically, the shape of the computational domain studied by Berenger
is rectangular, with the sides of the rectangle aligned in the Cartesian directions. In practical terms,
the technique of [61] demonstrates its superiority for electromagnetic waves calculation over the
local boundary conditions [42] based on the Pad�e approximation.

We now describe another approach for constructing the approximate local ABC's. Because of
its algorithmic simplicity, low computational cost, and geometric universality, this approach has
become very popular in computational practice. At present, it is most widely used in di�erent
�elds, in particular, computational 
uid dynamics (CFD).

Clearly, numerous nonstationary problems in CFD can be successfully modeled using the wave
propagation \language". As mentioned above, many authors that investigate unsteady problems
of the wave propagation type suggest the construction of ABC's that are based on the principle of
allowing any wave that travels toward the boundary to leave the computational domain without a
re
ection. Being implemented with the help of integral transformations, this principle yields the
exact nonlocal ABC's (for those problems, in which the exterior solution is composed of outgoing
waves only, see above). For time-dependent 
ow calculations, the idea of treating the external
boundary remains the same as for general wave propagation problems: to make the boundary
transparent for outgoing waves and to eliminate the spurious re
ections of waves from the boundary
back into the computational domain. However, a completely di�erent way of implementation of
this principle, which is based on the (quasi-)one-dimensional characteristic analysis, leads here to
essentially local ABC's.

Hedstrom [62] considers the one-dimensional Euler equations (gasdynamic system) on a �nite
domain (segment). Using a Riemann representation near the boundary points, he explicitly calcu-
lates the number of characteristics entering the domain and the number of characteristics leaving
the domain. Clearly, characteristics that enter the computational domain correspond to incoming
waves since the data are transferred inward along these characteristics from outside the domain.
Analogously, characteristics that leave the computational domain correspond to outgoing waves
since the data are transferred outward along these characteristics from inside the domain. In terms
of setting the boundary conditions, the values of outgoing Riemann invariants should be extrap-



ARTIFICIAL BOUNDARY CONDITIONS 9

olated along the characteristics from inside the domain to its boundary. It makes the boundary
transparent for outgoing waves, and in the special case of supersonic out
ow (when no incoming
characteristics exist), it enables one to specify all necessary boundary conditions. The situation is
di�erent for the subsonic case, when for both in
ow and out
ow types of the boundary there are
always incoming, as well as outgoing, characteristics. Obviously, speci�cation of only the outgo-
ing data would leave the problem subde�nite; therefore, the incoming Riemann variables must be
prescribed as well. This step, generally speaking, can be accomplished in a variety of ways and
here one can most clearly see the di�erence between \simply the appropriate boundary conditions"
and \the true ABC's". Namely, to simply obtain a well-posed problem on a �nite interval, one
can select the boundary conditions, i.e., specify the incoming Riemann invariants, from a fairly
wide class of data (this problem has been studied by many authors). On the other hand, to con-
struct the true ABC's one has to take into account the structure of the solution from outside the
computational domain. In particular, the exterior solution should be used to prescribe the values
of incoming Riemann variables. The simplest and most commonly used approach here is to set
all the incoming Riemann variables outside the computational domain constant and equal to the
corresponding free-stream values. That is exactly what was done by Hedstrom in [62]. We should
mention that this approach is fully relevant to one-dimensional problems only. The corresponding
boundary conditions are sometimes called radiation boundary conditions. Hedstrom [62] shows
that these conditions provide zero re
ection for the rarefaction waves, while for weak shocks, the
re
ection is cubically small.

The local radiation boundary conditions can also be applied to multidimensional problems;
although some simplifying assumptions have to be done in regard to the behavior of the solution
outside the computational domain. For example, for the case of two-dimensional Euler equations
in subsonic regime one cannot simultaneously diagonalize both matrices that correspond to the
spatial di�erentiation along any two linearly independent directions. Therefore, to implement any
characteristic-based treatment one has to select some speci�c direction for the spatial di�erentiation,
which is equivalent to assuming that the external solution is composed of only some particular kind
of waves. This immediately makes the characteristic-based treatment only approximate.

The example of development and implementation of characteristic radiation boundary condi-
tions for multidimensional problems is given in work by Thompson [63]. He studies quasi-one-
dimensional formulation of the equations locally at each boundary point; the direction for the
spatial di�erentiation is every time chosen to be normal to the boundary. This, in particular,
implies that the exterior solution is assumed to consist only of the waves that propagate outward
normally to the boundary. The ABC's of [63] are constructed using the same type of character-
istic analysis as described in [62] but applied here to the quasi-one-dimensional problem. In so
doing, one cannot generally expect the boundary to be transparent for the outgoing waves with
incident angles that di�er from �=2. The approach of [63] was further developed and generalized
by Vanajakshi, Thompson, and Black [64] and Thompson [65].

Generally, the approach based on local characteristic analysis is attractive for practical com-
puting because of its algorithmic simplicity, low computational cost, and geometric universality.
The last feature in multidimensional problems is achieved by introducing the foregoing essential
simpli�cation: the pre-selection of one speci�c direction for the spatial di�erentiation. This, at
the same time, is a serious drawback of the characteristic-based approach, which eventually leads
to relatively low �nal accuracy. In other words, the outgoing waves that propagate at an angle
to the boundary and should therefore have been taken into account for specifying the incoming
values at later times are partially re
ected back to the domain, which e�ectively causes the wrong
data coming from the boundary, and partially get through but never used then, which causes the
irreversible loss of the corresponding information. Moreover, as mentioned by Kreiss an Gustafsson
in [66] (see also [5]), the simplest radiation conditions do not apply to the case of nonzero forcing



10 S. V. TSYNKOV

terms/initial data outside the computational domain. Some other examples of 
ows to which radi-
ation conditions do not apply because the incoming waves do exist in the solution can be found in
the work by Thompson [63].

Finally, it is interesting to note that the radiation boundary conditions for the linear case can
also be obtained using some low-order approximations to the symbols of the corresponding 	DO's.

Basically, it appears that the Euler radiation conditions based on (quasi-)one-dimensional char-
acteristic analysis may provide su�cient accuracy only if the arti�cial boundary is located far
enough from the source of perturbations (e.g., from the immersed body for external 
ow prob-
lems). This circumstance, of course, may require an excessively large computational domain in
comparison with that required by exact ABC's. For each speci�c case, it is always a separate
question whether or not the extra computational e�ort originating from this extended domain can
be compensated for by the simplicity and low cost of the local ABC algorithm.

One can also formulate some local boundary conditions for the Navier-Stokes equations, which
form a system of the so-called incompletely parabolic type. A thorough analysis of well-posedness
for some linear incompletely parabolic problems (in particular, for the linearized Navier-Stokes
equations and for the linearized shallow water equations) is provided by Gustafsson and Sundstr�om
[67]. This analysis uses the apparatus of energy estimates and allows the authors to select appropri-
ate (i.e., well-posed) boundary conditions in a certain initially prescribed class, namely, in the class
of �rst-order di�erential relations. Later, Nordstr�om [68] provided the same type of analysis for a
wider class of boundary conditions | second-order di�erential relations. Local ABC's derived in
[67] and [68] can be successfully used for 
ow computations under the same restriction as applies to
the characteristic Euler conditions: the computational domain must be large enough. We also note
that the Euler radiation boundary conditions can be obtained from the constructions of [67, 68] as
the Reynolds number vanishes.

In the context of viscous 
ow computations we should also mention earlier work of Rudy and
Strikwerda [69, 70], in which a special \hyperbolic-type" local NRBC was derived and numerically
implemented for calculating the 
ow over a 
at plate in the framework of the two-dimensional
compressible Navier-Stokes equations. The study by Rudy and Strikwerda has probably for the
�rst time revealed the superiority of NRBC's over the simplest Dirichlet-type out
ow boundary
conditions for the Navier-Stokes computations.

In later work [71], Abarbanel, Bayliss, and Lustman used linearization of the Navier-Stokes
equations against the approximate wake-type downstream solution to construct local ABC's for
the viscous 
ow over a 
at plate. The ABC's [71] are based on selecting the long-wave modes from
asymptotic expansion of the solution to the corresponding linearized system. The approach of [71]
was then generalized by Danowitz [72] for a wider class of external viscous 
ows than only the 
ows
over a 
at plate.

Another technique for constructing local ABC's for viscous 
ow computations is based on
extrapolation of 
ow variables from inside the computational domain to the arti�cial boundary;
this technique can probably be referred to among the simplest ones. Generally, one cannot expect
to obtain high accuracy from such a procedure. Moreover, for subsonic 
ows extrapolation may
even lead to the ill-posed problems, as was (experimentally) demonstrated by Rudy and Strikwerda
in [70]. However, for a particular class of problems, namely for the 
ows of the boundary layer type,
when the solution contains strong transversal gradients, the extrapolation boundary conditions may
be appropriate. Gustafsson and Nordstr�om [73] provide some theoretical justi�cation for using
the out
ow extrapolation boundary conditions to calculate steady 
ows with strong transversal
gradients. Moreover, they corroborate numerically that if the entire out
ow boundary is subsonic,
then the extrapolation conditions are inapplicable; however, if the external 
ow is supersonic and
the subsonic part of the 
ow is contained only in the boundary layer (which implies presence of the
strong transversal gradients), then the extrapolation conditions do apply and produce good results.
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The approach of [73] was further generalized by Nordstr�om [74] for the case of unsteady 
ows and
[75] for the �nite-di�erence formulation of the problem. Similar issues have been then analyzed by
Nordstr�om in [76]. We should note that the case of intersection of the arti�cial boundary and the
solid boundary (which means that the arti�cial boundary crosses the boundary layer) presents one
of the most di�cult situations from the standpoint of constructing the ABC's. In the meantime,
we do not know of any other robust technique for setting the ABC's in this case except for the
one based on extrapolation. We also note that the basic function of the extrapolation boundary
conditions [73] is to suppress boundary layers that are generally relevant to the near-boundary
behavior of the solutions to the Navier-Stokes equations. The idea of suppressing the non-physical
boundary layers that may arise near the in
ow and out
ow arti�cial boundaries is a central one
for the work of Johansson [77], in which the set of ABC's that contain higher-order extrapolation
conditions as a part was derived and numerically implemented for some incompressible Navier-
Stokes computations.

The basic conclusion that can be drawn from this introductory survey is that any algorithm for
setting the ABC's should, generally speaking, satisfy two groups of requirements, which to a certain
extent may be contradictory. The �rst group is mainly associated with accuracy requirements; as
mentioned above, meeting these requirements virtually always leads to the nonlocal ABC's. On
the other hand, the exact nonlocal ABC's have their essential limitations. Namely, such boundary
conditions can be accurately derived only for the linear governing equations (in most cases) and
for some particular geometries; moreover, the discrete implementation of nonlocal ABC's is not
always easy, even when their continuous formulation is available. The second group combines
the requirements of algorithmic simplicity, geometric universality, and low computational cost;
the approximate approaches that result in local ABC's are usually much better than the exact
ones from this standpoint. On the other hand, the accuracy provided by local ABC's is often
insu�cient. Therefore, in constructing a speci�c numerical algorithm, one always has to select an
optimal computational strategy compromising between the two groups of requirements mentioned
above.

However, modern trends in the development of numerical methods will, in our opinion, make
higher and higher requirements for the accuracy of computations. Consequently, we expect the
practical demands for highly accurate ABC's to grow in the future. This will obviously necessitate
paying more attention to constructing such highly accurate (nonlocal) ABC's that will at the same
time be computationally e�ective (a few particular examples of this type are described below).
Additionally, one should always aim to obtaining a robust numerical procedure, therefore, the
robustness becomes one of the most important experimental criteria for assessing and comparing
di�erent ABC's.

Obviously, the review provided above is not complete. Referring the reader to two comprehen-
sive works by Givoli [78, 79] for more survey information, we now proceed to describing the DPM
[29, 30] and the DPM-based ABC's, which are the focus of this presentation.

2. The Generalized Potentials and the Di�erence Potentials Method. Our ultimate
goal is to construct ABC's that, to a certain extent, combine the advantages of local and nonlocal
approaches. Namely, we aim to achieve high accuracy relevant to the nonlocal techniques and, at
the same time, geometric universality and algorithmic simplicity relevant to many local methods.
Our main tool in achieving this goal is the apparatus of the generalized potentials and the DPM
[29, 30].

In this section, we use a model example for the Poisson equation to show the principle elements
of the construction of generalized potentials and their implementation for setting the ABC's. Of
course, the presentation below is far from being thorough. A delineation of the ideas associated with
generalized potentials, boundary equations with projections, and their numerical implementation
(DPM), as well as many examples, can be found in the original work by Ryaben'kii [29, 30].
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The next section of this paper will be devoted to the speci�c constructions of ABC's based on
the DPM.

Let us �rst return for a moment to the second example in Section 1. There, we have truncated
the original in�nite problem (1.3) and have obtained the �nite problem (1.3a){(1.5) on the disk
fr � R0g instead. The arti�cial boundary fr = R0g has been chosen to be circular, which is
essential for constructing ABC's (1.5) (indeed, the separation of variables could not be implemented
otherwise).

Here, we are going to consider an analogous example but for three space dimensions. Switching
from two to three dimensions preserves all essential elements of our construction and, at the same
time, allows us to avoid the unnecessary complications associated with the logarithmic asymptotics
of some classical potentials in two dimensions. Thus, let us consider on R3 the Poisson equation
with the compactly supported RHS:

�u = f(x); x 2 R3; suppf(x) � B � fjxj < R0g:(2.1a)

We impose the condition of vanishing of the solution to (2.1a) at in�nity,

u(x) �! 0; as jxj �! 1;(2.1b)

and note that unlike the 2D case, we do not need to demand any special properties of f(x) (compare
with (1.3a)) to ensure the solvability of (2.1). Expanding the solution and the RHS in terms of
spherical functions, we obtain for jxj � R0 the following family of ordinary di�erential equations
describing the radial modes (r � jxj):

d

dr

�
r2
dûl
dr

�
� l(l+ 1)ûl = 0; l = 0; 1; 2; . . . :(2.2)

As in the 2D case, equation (2.2) has two eigensolutions for each l, l = 0; 1; 2; . . .: û
(1)
l (r) = rl

(increasing) and û
(2)
l (r) = r�(l+1) (decreasing). To satisfy (2.1b), we need to select only the

vanishing mode from the above two. Therefore, the following set of relations (compare with (1.5))

dûl
dr

����
r=R0

+
(l+ 1)

r
ûl

����
r=R0

= 0; l = 0; 1; 2; . . . ;(2.3)

provides here the exact ABC's at the spherical arti�cial boundary fr = R0g. (Note, 2l+ 1 linearly
independent spherical functions correspond to each value of l; this circumstance, in a sense, does
not in
uence the construction of ABC's (2.3) since the boundary conditions are simply the same
for all 2l+ 1 components.)

The problem obviously becomes much more di�cult if, for some reason, we need to consider an
arti�cial boundary with a more complicated shape. In practice, the shape of an arti�cial boundary
is often prescribed by the algorithm (more precisely, by the grid) used inside the computational
domain; some real examples will be provided in Section 3. As concerns the model case studied
here, we simply assume that there is an irregular arti�cial boundary � that separates the �nite
computational domain Din from its in�nite exterior Dex; we also assume that Din entirely contains
the support B of the RHS f(x) (see (2.1a)). The geometric setup (projection onto the plane)
is schematically shown in Figure 2.1, in which the closed dashed line represents �. The sphere
fr = R0g is needed as an arti�cial element in further consideration; without loss of generality, we
may always assume that Din � fr � R0g.
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Fig. 2.1. Example for Poisson equation in three dimensions: schematic geometric setup (projection onto the plane).

We now recollect the classical Green formula for harmonic functions. Namely, let uex(x),
x 2 R3, be harmonic in Dex and have a zero limit at in�nity, uex(x) �! 0 as jxj �! 1. Then,

uex(x) = ���(x)
uex(x)

2
+

Z
�

 
@G(x; y)

@ny
uex(y)�G(x; y)

@uex(y)

@ny

!
dsy ; x 2 �Dex;(2.4)

where ��(x) is the characteristic function of set �, ��(x) is equal to one on � and zero on R3n�;
G(x; y) = �(4�)�1jx� yj�1; n is the outward normal to �; s is the surface area; and the subscript
y denotes the variable of di�erentiation or integration. Note, the �rst term on the right-hand side
of (2.4) takes into account the jump of the double-layer potential, the addition of this term makes
(2.4) valid on the closed domain �Dex.

We emphasize that representation of uex(x) as a sum of the two potentials (double-layer and
single-layer, see (2.4)) holds only for harmonic functions on the domain. If, however, we specify
two arbitrary functions on � and substitute them into (2.4) as densities of the potentials, then the
resulting function will obviously be harmonic on Dex, but its boundary values, as well as boundary
values of its normal derivative, will not, generally speaking, coincide with the original densities of
the double-layer and the single-layer potentials, respectively.

Let us now de�ne the generalized potential with vector density �� � (�0; �1) speci�ed on �.
We will use the formula analogous to (2.4) but will not require in advance that �0 and �1 be the
boundary values of some harmonic function and its normal derivative, respectively. Speci�cally,
the generalized potential is given by the following expression:

uex(x) = Pex�� � ���(x)
�0(x)

2
+
Z
�

 
@G(x; y)

@ny
�0(y)� G(x; y)�1(y)

!
dsy ; x 2 �Dex:(2.5)

We also de�ne the operation of taking the (vector) boundary trace of the function de�ned on Dex:
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�� = Tr uex(x) �

�
uex;

@uex
@n

� �����
�

:(2.6)

Finally, we de�ne the boundary operator P� that maps the space of traces �� onto itself; this
operator is a composition of the generalized potential Pex and the trace Tr,

P��� � TrPex��:(2.7)

Referring the reader to [29, 30] for further details, we only note here that the structure of the
operator P� from (2.7) is nontrivial since, in particular, it contains the normal derivative of the
double-layer potential. The corresponding singularity may noticeably complicate the direct calcu-
lation of P���; therefore, the actual calculation requires the development of a special alternative
approach (see below). However, the operatorP� itself appears to be extremely useful in the analysis
of boundary-value problems, it plays a fundamental role in our further consideration.

We note that the operators analogous to P� for the �rst time appear in the work of Calderon
[80] and then Seeley [81]. It turns out that P� is a projection, P� = P2

�; sometimes it is called the
Calderon boundary projection. Ryaben'kii (see [29, 30] and the corresponding bibliographies) had
modi�ed and generalized the original construction and developed an e�ective way for numerical
treatment of the boundary projection operators.

It is easy to show that those and only those vector functions �� that satisfy the following
boundary equation with projection (BEP)

P��� = ��(2.8)

admit a harmonic complement uex on Dex that vanishes at in�nity and has the trace �� on �,
Truex = ��. Indeed, if uex(x) is harmonic on Dex and vanishes at in�nity, then we rewrite Green's

formula (2.4) as uex(x) = Pex

�
uex;

@uex
@n

� �����
�

and, applying Tr from (2.6), we obtain (2.8). Con-

versely, if (2.8) holds for some ��, then the harmonic function Pex�� vanishes at in�nity (as a sum
of two classical potentials) and has the trace ��.

Thus, equation (2.8) is paramount since it provides an exhaustive classi�cation of those and only
those vector densities �� that have a harmonic continuation on Dex. In other words, equation (2.8)
is equivalent to the Laplace equation on Dex along with the condition of vanishing of its solution at
in�nity. Therefore, equation (2.8) provides us with a desirable exact ABC at the irregular boundary
�. Rather than solving (2.1) or (2.1a){(2.3), we may now solve (2.1a){(2.8) and obtain exactly the
same solution on Din.

The operator P� is obviously nonlocal. Moreover, some computationally di�cult elements still
remain in its structure. Therefore, we will now rede�ne P� in a more practical way. First, let us
recall the classical Green identity (� is the volume):

���(x)
uex(x)

2
+

Z
�

 
@G(x; y)

@ny
uex(y)� G(x; y)

@uex(y)

@ny

!
dsy =

= uex(x)�
Z Z

Dex

G(x; y)�yuex(y)d�y; x 2 �Dex;

(2.9)

which holds for any function uex(x) such that the convolution in the second term on the right-hand
side of (2.9) exists. Since (2.9) is an identity, and its left-hand side coincides with the Green formula
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for harmonic functions (see (2.4)), we can use (2.9) to construct a new de�nition of generalized
potential. Indeed, for any prescribed vector density ��, we simply take some u(y) de�ned on R3

and such that Tru = ��. Then, we consider the following function:

gex(y) =

(
�yu(y); y 2 Dex

0; y 2 �Din
(2.10)

and easily derive

Pex�� = u(x)�

Z Z
R3

G(x; y)gex(y)d�y; x 2 �Dex:(2.11)

Indeed, formula (2.11) immediately follows from de�nition (2.5) and identity (2.9) since, according
to (2.10), the right-hand sides in (2.9) and (2.11) are the same for x 2 �Dex. As concerns the choice
of u(y) from (2.10), the only essential requirement is that Tru = ��; this requirement is always
easy to meet. At the same time, we can easily ensure the existence of convolution from (2.11), since
the function u(y) (and, consequently, gex(y)) can, for example, always be chosen to be compactly
supported without loss of generality.

Using this new de�nition of generalized potential (see (2.11)), we construct the boundary
projection P� in the same way as before, i.e., in accordance with formula (2.7). We emphasize that
the new de�nitions of Pex and P� no longer require the calculation of surface integrals; instead,
one needs to calculate a volume Newton potential (see (2.11)).

The last step is to understand that, generally speaking, we do not need to know the generalized
potential everywhere on the in�nite domain Dex. In particular, to construct exact ABC's in the
form (2.8) we need to know this potential only in the vicinity of � to calculate the operation P�.
Therefore, we can, for example, introduce the spherical arti�cial boundary fr = R0g and rewrite
(2.11) as

Pex�� = u(x)�
Z Z

fr�R0g
G(x; y)gex(y)d�y; x 2 �Dex \ fr � R0g;(2.12)

assuming (without loss of generality) that supp gex(y) � fr � R0g. (Recall, u(y) from (2.10) can
always be chosen to be compactly supported.) Clearly, boundary projections (operators P�) that
can be constructed on the basis of (2.11) and (2.12) are exactly the same. Now, we simply notice
that the second term on the right-hand side of (2.12) is the solution of a certain auxiliary problem
(AP) formulated on the ball fr � R0g. Indeed, this term obviously solves on fr � R0g the Poisson
equation

�u = �gex(x); x 2 fr � R0g;(2.13)

supplemented by boundary conditions (2.3). Therefore, AP (2.13){(2.3) can be used instead of
(2.12) for calculating the generalized potential on fr � R0g for this speci�c example. Usage of
the AP (2.13){(2.3) instead of convolution (2.12) is a major simpli�cation from an algorithmic
standpoint since the AP is formulated on a simple domain and admits an e�ective solution by the
separation of variables.

Generally, the concept of the AP is the second most important element in our consideration.
Indeed, we see that exact ABC's at the irregular arti�cial boundary � are obtained in the form of
BEP (2.8). To calculate the projection P�, we originally needed surface integrals (2.5), then we
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replaced the surface integrals with a volume potential (2.11), and �nally, we have found the way to
calculate the generalized potential and the boundary projection using AP (2.13){(2.3), which can
be easily solved by separation of variables.

Summarizing, we see that to set the exact ABC's at the irregular arti�cial boundary one needs
�rst to formulate an appropriate AP and then to construct the BEP of type (2.8). We do not further
delineate this statement here; instead, we provide some practical examples in the next section.

To complete this section, we �rst note that metric properties of potentials and projections
(well-posedness of BEP's) for di�erent problems are thoroughly studied by Ryaben'kii in [29, 30].
Second, we brie
y address the numerical aspects of calculating generalized potentials and projec-
tions, i.e., the DPM in a narrow sense. The essence of the DPM is an analogue of the Calderon
boundary projection constructed for the �nite-di�erence formulation. We begin with specifying
some di�erence AP; the AP should be uniquely solvable and well-posed and should also admit an
easy numerical treatment. For example, AP's that can be solved by separation of variables on the
basis of, e.g., the discrete Fourier transform or the di�erence spherical functions (see [7]), have
found extensive practical applications (see [29] and the examples below). Of course, the di�erence
AP used for constructing the ABC's should contain some element analogous to (1.5) or (2.3) for the
exact transfer of boundary conditions from in�nity, examples of such AP's are given in Section 3.
The grid for the AP is usually regular (e.g., Cartesian, polar, spherical, etc.), and no grid adaptation
to the shape of � is required. Instead, we consider a special subset of nodes of this grid called the
grid boundary. The grid boundary 
 is located, in a certain sense, close to the continuous boundary
�; the structure of 
 depends on the stencil used for the di�erence approximation of the original
di�erential operator. Speci�cally, the entire regular grid is separated by � into two subsets of nodes;
the �rst subset belongs to Din, and the second one belongs to �Dex. These subsets have no common
points. We now apply the stencil to every node of each of the two above-mentioned subsets; clearly,
the stencil always sweeps a wider grid area than the original subset. The two grid areas swept by the
stencil obviously have now a non-empty intersection; the latter is called grid boundary 
. Basically,
it appears that 
 is a multi-layered set of nodes of the regular grid concentrated near �. Instead
of vector densities ��, we consider scalar grid functions on 
; since 
 is multi-layered, the former
can in a certain sense be modeled by the latter. The formal construction of generalized di�erence
potentials and di�erence projections consists of the same elements as above. We simply plug the
corresponding di�erence objects instead of the continuous ones into the aforementioned procedure.
For example, the corresponding subsets of the regular grid are substituted forDin and Dex; the grid
boundary 
, for �; the di�erence operators, for the di�erential ones; solution to the di�erence AP,
for the solution to the continuous AP. In so doing, we obtain di�erence analogues to the potentials
and projections; the issues of consistency and convergence are delineated by Ryaben'kii in [29].
The full scheme of the DPM (and the construction of the DPM-based ABC's) may also require the
operation of continuing the boundary data from � to 
, as well as some interpolation operations.
Continuation of data from � to 
 is usually done by means of the Taylor formula, the details can
be found in [29, 30]. Di�erence potentials and projections, which can be e�ectively computed in
practice, are used for solving boundary-value problems by means of the DPM, as well as for setting
the ABC's.

Finally, we note that implementation of the DPM for setting the ABC's should not be assessed
only from the standpoint of geometric universality. It comes out that only some particular classes of
PDE's admit a true exact transfer of boundary conditions from in�nity to a closed �nite boundary
(e.g., circle or sphere). Indeed, such a transfer generally requires some sort of symmetry (e.g.,
cylindrical or spherical), which holds, for example, for the wave, Laplace, or Helmholtz equation,
but cannot be referred to as a general case. For the general case, even the construction of a
closed �nite boundary �, which would enable us to exactly transfer the boundary conditions from
in�nity (or to do that as close to exact as desired), may require some sophisticated elements (see
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below). In our opinion, such constructions, which are naturally incorporated in formulations of the
corresponding AP's, can be most e�ectively implemented in just the framework of the DPM.

3. The DPM-Based Nonlocal ABC's. General theoretical foundations for constructing
the exact DPM-based ABC's are provided by Ryaben'kii [17], see also brief note [82]. This work
presents an important contribution to the literature on numerical methods for problems on un-
bounded domains since the BEP's of type (2.8) are for the �rst time used in [17, 82] as the ABC's
to be set when truncating an external problem for the purpose of its numerical solution. Formerly,
the Calderon boundary projections were mostly applied to the qualitative analysis of integral equa-
tions and PDE's, and the DPM was mostly implemented only for solving the boundary-value
problems.

The author of [17, 82] studies a general unsteady problem formulated on some in�nite domain.
The problem is assumed to be already discretized on some grid, so that only the �nite-di�erence
formulation is considered. This allows one to obtain the ABC's directly for the speci�c numerical
algorithm rather than for the original continuous formulation, which is convenient in practice.
Outside some �nite grid domain (i.e., the computational domain), the problem is assumed to
be linear and homogeneous, and the original boundary conditions at in�nity are also assumed
to be homogeneous. No restrictive assumptions are made in regard to the problem inside the
computational domain; it can even be nonlinear. The only important requirement of the overall
formulation is that the problem be uniquely solvable and well-posed. Such a consideration is relevant
to many applications, for example, solid mechanics, where one often has some bounded region with
the strong deformations (like plasticity or destruction) surrounded by an extended medium where
the deformations are small and are, therefore, governed by the linear elasticity equations. In regard
to the shape of the computational domain in [17], generally speaking, no restrictive requirements
re imposed.

The ABC's [17] are obtained in the form of a di�erence BEP analogous to (2.8). As mentioned
above, the di�erence BEP's are written with respect to a grid potential density de�ned on the grid
boundary 
. In the case of unsteady problems, 
 is generally a multi-layered cylindrical surface (with
an element aligned to the time axis) consisting of grid nodes; it is an analogue to the continuous
cylindrical boundary of the � � [0; T ] type. The AP used by Ryaben'kii in [17] is also unsteady;
it is solved by some time-evolution technique. Since the Green operator of AP is incorporated
in the structure of the boundary projection, the resulting ABC's in [17] appear to be nonlocal in
both space and time. We emphasize that these ABC's are exact in the sense mentioned above: the
solution found inside the computational domain with the help of these boundary conditions is the
same as it would be if the original (in�nite-domain) problem were solved.

To reduce the computational cost associated with nonlocality, which can be rather high for
the general formulation, Ryaben'kii [17] proposes several di�erent approaches that are relevant to
some particular classes of problems. For example, if the coe�cients of the linear system, as well
as the discretization parameters in space, do not depend on time, then the corresponding Green
operator becomes invariant with respect to a shift along the time axis. This provides a noticeable
economy when calculating and storing the coe�cients of the Green operator. If the problem under
study is parabolic, then the coe�cients of its Green operator become small as the corresponding
time interval becomes large. Therefore, only some �xed number of these coe�cients is e�ectively
needed to be taken into account for each speci�c moment of time, whereas the remainder of the
coe�cients can be neglected. This obviously leaves the ABC's nonlocal in time but only for some
�nite interval in the past. For some hyperbolic problems, it is also possible to e�ectively \cut o�
the tail" in time using the existence of lacunas. In particular, if the number of space dimensions
is odd, the coe�cients of a linear hyperbolic system are constant, and the lower order terms in
the equations are absent, then the solution to the corresponding Cauchy problem has lacunas. In
particular, it means that if the initial data are compactly supported, then the solution becomes zero
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in any �xed (spatial) domain for su�ciently large time. The same property should asymptotically
hold for the di�erence Cauchy problem as well; the latter can be used as an AP. In so doing, we
again can neglect those coe�cients of the Green operator that correspond to the large time intervals
and, therefore, restrict the nonlocality of the ABC's in time. These techniques, as well as some
others presented in [17], can substantially reduce the required computer e�ort when calculating
the nonlocal exact ABC's. Finally, it is worth mentioning that the DPM-based ABC's [17] can be
considered as a certain type of \standard software". Indeed, the parameters of the process inside
the computational domain can be changed, but as long as the exterior linear problem and the shape
of the arti�cial boundary remain intact, the ABC's also remain exactly the same. Therefore, these
boundary conditions can be e�ectively used for solving families of similar problems.

It is important to note that from an algorithmic standpoint, the role of the ABC's (in particular,
of type [17]) is simply to close the �nite-di�erence system solved inside the computational domain.
Indeed, the stencil of the scheme used inside Din cannot be applied to the nodes located at the
external boundary or near it since the part of the stencil may simply \fall out" of the domain.
Therefore, the �nite-di�erence system appears to be undetermined and requires that the missing
relations between the values of the solution near the external boundary be provided by the ABC's.
When the ABC's are constructed as a di�erence analogue to (2.8), one can always think that the
data on the internal layer(s) of the grid boundary 
 are known and the data on the external layer(s)
are to be determined using the BEP. Therefore, the question of actually solving the BEP (for a
speci�c �nite-di�erence formulation) and expressing the boundary values in terms of data provided
from inside Din becomes an important issue. This question is closely related to another one, namely,
implementation of the DPM-based ABC's with di�erent types of time-evolution procedures. Some
examples of such an implementation are also given in [17].

Ryaben'kii [17] provides a general framework of the algorithm for setting the ABC's based
on the DPM. Any speci�c problem, of course, requires special treatment. Zueva, Mikhailova, and
Ryaben'kii [83] and Brushlinskii, Ryaben'kii, and Tuzova [84] numerically investigate di�usion of
the magnetic �eld in a �nite conducting object immersed in a vacuum. Both papers deal with the
2D formulation. In [83], the Cartesian coordinates are used to study the magnetic �eld on the
plane normal to a �nite-section conducting rod; in [84], the conducting structure is a �nite-section
axisymmetric annulus, and the magnetic �eld is studied in the meridian plane (r; z). The di�usion
process inside the conducting structure may be unsteady; however, the �eld in the surrounding
vacuum is described by the Laplace equation. Therefore, the AP in [83] and [84] is formulated
and solved for the Laplace equation. Physical formulation of the problem generally assumes that
the surrounding vacuum is in�nite; in practice, however, the in�nity is modeled by some remote
boundary at which the magnetic �eld turns to zero. Clearly, the size of the entire domain (including
the vacuum area) must be chosen to be much larger than the cross section of the aforementioned
rod or annulus; consequently, the ABC's that can exactly transfer the remote boundary condition
to the surface of the conducting structure are as important in this model formulation as in the truly
in�nite one. In [83, 84], the remote boundary condition is simply incorporated into the formulation
of the AP. Then, the exact ABC's are obtained in the form of a di�erence BEP; the BEP is further
resolved for numerical convenience. This process results in a matrix relation that connects the
vectors of unknowns on internal and external layers of the two-layered grid boundary 
. Therefore,
the implementation of the ABC's [83, 84] becomes simple from an algorithmic standpoint: the
matrix is calculated only once, and then it multiplies the corresponding vector at each time step.

The DPM-based ABC's [83, 84] can be obtained in exactly the same manner for any shape
of the cross section of the conducting object; the actual numerical experiments in [83, 84] are
carried out for the rectangular cross section. These experiments show that the computational cost
of the algorithm that includes the DPM-based ABC's is much lower than the cost of the standard
procedure that is based on actually solving the Laplace equation in a vacuum area at each time
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step. At the same time, the accuracy of the solution calculated inside the rod (annulus) with the
ABC's [83, 84] is the same as the accuracy obtained when the entire original problem is solved on
an extended domain. Therefore, the DPM-based algorithm turns out to be an attractive technique
for solving problems of this type.

In [85], Mishkov and Ryaben'kii solve the nonhomogeneous Helmholtz equation on a semi-
plane. The RHS of the equation is compactly supported, it models a sound source (e.g., a scatterer
or an emitter). The surrounding semi-in�nite sound-conducting medium is strati�ed; it consists
of two layers with di�erent speeds of sound, which makes the coe�cient at the zeroth-order term
piecewise constant. Finally, radiation boundary conditions at in�nity are formulated using the
limitary absorption principle. The solution to this problem should be numerically found on some
�nite computational domain that entirely contains the aforementioned sound source.

The non-constancy of coe�cients makes this problem di�cult to handle. In particular, there is
most likely no means to exactly (analytically) transfer the boundary conditions from in�nity even to
some regular �nite boundary, as in the case of the Laplace equation that was done for a circle and for
a sphere (see (1.5) and (2.3), respectively). Therefore, the AP in [85] is formulated for the perturbed
Helmholtz equation (�nite absorption is added) on a su�ciently large rectangle, and zero Dirichlet
boundary conditions are set at its sides. It is shown that as the size of this rectangle enlarges,
the solution to the AP approaches the solution of the corresponding in�nite-domain problem on
any �xed neighborhood of the computational domain. It is also shown that as the absorption
coe�cient vanishes, the solution to the di�erence AP does approach the solution that corresponds
to the true outgoing waves without an absorption. Moreover, a special method is proposed in [85]
that enables one to formally let the absorption coe�cient be zero in the computations and to still
obtain the solution composed of only outgoing waves. Consequently, ABC's [85] that are obtained
in the form of a di�erence BEP based on the solution to the di�erence AP described above, can
generally be constructed as close to the exact ABC's as desired. In other words, with these ABC's
the truncated problem can be solved so that its solution di�ers from the corresponding fragment of
the original solution within the initially prescribed accuracy. Of course, achieving the high accuracy
may require a large domain for the AP. However, ABC's [85] become most e�ective when they are
used to solve a series of similar problems, e.g., to calculate sound �elds from di�erent sources in
the same medium, which is frequently an important practical case.

Tsynkov [86, 87] and Sofronov and Tsynkov [88] consider a �nite body (airfoil) immersed
in an in�nite 
ow of inviscid compressible 
uid. The 
ow is governed by the Euler equations
and is assumed to be subsonic at in�nity; for the purpose of numerical solution, the equations are
discretized on a �nite-di�erence O-type grid that is generated around the body. The computational
domain in [86, 87, 88] is formed by the grid; therefore, the shape of its external boundary is
completely determined by the grid as well, and no special assumptions in regard to this shape
are made. Outside the computational domain, the Euler equations are linearized against the free-
stream background. Moreover, we assume the existence of the velocity potential in the far �eld
and split the linearized system into elliptic (velocity) and advection (entropy) parts. After the
term associated with the circulation of 
ow around the airfoil is subtracted, the regular part of the
potential of velocity perturbations is described by the Prandtl-Glauert equation
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with a zero boundary condition at in�nity:

'(x; y) �! 0; as x2 + y2 �! 1:(3.1b)

Equation (3.1a) can be easily reduced to the Laplace equation by means of an a�ne coordinate
transformation; in so doing, boundary condition (3.1b) obviously remains intact. To obtain ABC's
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for velocity components, we represent the solution to (3.1) in the form of a generalized potential
and then construct the corresponding BEP. We use the AP formulated on a ring-shaped domain
fR1 � r � R0g; the external circle fr = R0g encompasses the arti�cial boundary and the internal
circle fr = R1g lies inside the computational domain. At r = R1, we specify homogeneous Dirichlet
boundary conditions; at r = R0, we specify boundary conditions (1.5a). It is possible to make
sure that such an AP is uniquely solvable and well-posed for any RHS concentrated inside the
ring. Numerically, the AP is easy to solve by means of the discrete Fourier transform in polar
coordinates.

As mentioned above, the ABC's in the discrete formulation should simply close the system that
is solved inside the computational domain. For the case of a second-order scheme employed inside
the computational domain, we can always assume that velocity components on the penultimate
coordinate row � of the O-type grid are known, whereas the corresponding values on the outermost
row �1 should be determined using the ABC's. Therefore, we consider the penultimate coordinate
line � as an actual arti�cial boundary. Grid boundary 
 consists of those nodes of the polar AP
grid that are located near � (see Section 2). The �nite-di�erence BEP with respect to a potential
density de�ned on 
 is constructed in a standard way (see Section 2) on the basis of the AP
described above. Then, this BEP is solved so that the velocity on � provided from inside the
computational domain coincides with the gradient of potential (3.1) in a certain generalized sense.
After the BEP is solved, we can �nd the grid potential density for any data (velocity components)
speci�ed on �. Once this grid density is known, we calculate the generalized potential and �nd the
trace of its gradient on the outermost coordinate line �1 by means of interpolation; this procedure
yields the ABC's for velocities. Finally, the ABC's for thermodynamic parameters are obtained
using local relations, speci�cally, the Bernoulli equation and the entropy advection equation.

The technique of [86, 87, 88] for constructing the ABC's was combined with an iterative method
[89] by Sofronov for calculating steady solutions to the Euler equations. A few subsonic and
transonic airfoil 
ows have been numerically studied; in the transonic case, local supercritical
regions should always be located inside the computational domain so that the exterior linearized 
ow
remains purely subsonic. Results of the numerical experiments presented in [88] demonstrate clear
superiority of the nonlocal DPM-based ABC's over the standard local techniques based on quasi-
one-dimensional characteristic analysis (see above). For a �xed computational domain, nonlocal
ABC's [86, 87, 88] provide better accuracy and a faster convergence rate than local techniques; the
entire numerical algorithm also appears to be more robust. Indeed, for some variants the iteration
procedure supplemented by local boundary conditions may simply fail to converge, which never
occurs for ABC's [86, 87, 88]. Additionally, when the arti�cial boundary approaches the airfoil, the
solution obtained with the technique of [86, 87, 88] appears to be essentially less in
uenced by the
decrease in the size of the computational domain than the solution obtained on the basis of the
local boundary conditions. In other words, ABC's [86, 87, 88] allow one to maintain good accuracy
for much smaller computational domains than the standard boundary conditions do. These results,
along with the geometric universality of ABC's [86, 87, 88], make this approach most useful for
calculating external Euler 
ows.

Let us now describe another algorithm for setting the nonlocal DPM-based ABC's in external

ow computations. The foundations of this algorithm are proposed by Ryaben'kii and Tsynkov
[25], further generalizations, as well as results of the numerical experiments, can be found in the
work of Tsynkov [1] and Tsynkov, Turkel, and Abarbanel [90].

We consider a �nite body immersed in an in�nite 
ow of viscous compressible 
uid; at in�nity,
the 
ow is assumed to be subsonic. The general framework for constructing the ABC's remains
the same as above. We �rst linearize the governing equations in the far �eld, then we formulate
an appropriate AP, and �nally we obtain the corresponding BEP. However, the treatment of the

ow in a viscous formulation requires the development of special approaches for all stages of the
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aforementioned procedure. Below, we concentrate primarily on the construction of the AP since
the AP is responsible for the \right" far-�eld behavior of the solution; therefore, the AP is the main
element of the entire ABC algorithm that re
ects the essential features of the original formulation.
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Fig. 3.1. Con�guration of domains.

The general geometric setup for the problem is shown in Figure 3.1. We integrate the Navier-
Stokes equations on a �nite-di�erence C-type grid generated around the body (airfoil). This grid
covers the �nite computational domain Din, the in�nite exterior to Din is called Dex. The domains
Din and Dex are separated by the arti�cial boundary �, which is the penultimate coordinate row
of the grid. The outermost coordinate row of the grid is called �1. As mentioned above, the ABC's
should close the �nite-di�erence system solved inside Din. In other words, for a second-order scheme
employed inside the computational domain (3 � 3 stencil) the ABC's should provide the missing
relations between the values of the solution at � and at �1. We will further discuss this case only;
if, however, the stencil used inside Din is larger than 3 � 3, then the entire construction requires
only minor changes. Namely, instead of �1 one will have to consider more coordinate lines exterior
to �.

Assuming that the 
ow perturbations are small in the far �eld, we linearize the governing equa-
tions in Dex around the constant free-stream background. The linearized stationary compressible
Navier-Stokes equations (2D plane dimensionless formulation) take the form
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where u, v, p, and � are the perturbations of velocities, pressure, and density with respect to the
corresponding free-stream parameters; M0 is the Mach number at in�nity; Re is the Reynolds
number at in�nity; Pr is the Prandtl number; and � is the ratio of speci�c heats. We use the
equation of state (� � 1)" = p=� to eliminate the internal energy " from the fourth equation in
(3.2a); � in this equation is the Laplace operator.

System (3.2a) is supplemented by the condition of vanishing of all perturbations at in�nity:

(u; v; p; �) �! (0; 0; 0; 0); as x2 + y2 �! 1:(3.2b)

Further, instead of the original formulation we consider a new coupled problem; this problem is
nonlinear in Din (original Navier-Stokes equations with no-slip conditions at the body) and linear
in Dex (system (3.2a) with the free-stream limit of the solution (3.2b) at in�nity). We cannot
solve this coupled problem directly because Dex is in�nite, so we equivalently replace the entire
linear part of the problem by the BEP formulated on � (more precisely, by the di�erence BEP).
To accomplish this step, we need to formulate an AP, which takes into account the structure of the
solution from outside the computational domain. Recall, in Section 2 such an AP was formulated
on a ball and the boundary conditions were transferred from in�nity to the surface of this ball using
an analytical approach. For the example in Section 2 this approach was feasible since the Laplace
equation admitted the separation of variables in spherical coordinates.

Here, we would like to develop an analogous construction for (3.2). However, most likely no
analytical approach can be implemented directly to exactly transfer boundary condition (3.2b)
for system (3.2a) from in�nity to some closed �nite boundary. Apparently, system (3.2a) admits
separation of variables in the Cartesian coordinates only, which is a major di�erence in comparison
with the cases investigated previously. Obviously, this circumstance will strongly in
uence the
formulation of the AP.

First, we introduce a rectangular domain D0
Y = (0; X)� (�Y=2; Y=2) � Din (see Figure 3.1)

and construct a central-di�erence second-order approximation to (3.2a) in D0
Y on a Cartesian grid

with the sizes hx and hy . In accordance with the general scheme of the DPM, AP is formulated
for the inhomogeneous di�erence counterpart to (3.2a). A compactly supported RHS for the AP is
speci�ed in the same way as described Section 2 (see [25] and [1] for more details).

Further, we assume periodicity with the period Y along the y direction and take the discrete
Fourier transform (with respect to y) of both parts of the inhomogeneous di�erence analogue to
(3.2a). This process results in a second-order system of ordinary di�erence equations for each
wavenumber k. Then, we reduce this system to a �rst-order one by introducing the new variables
[25] and obtain

Akv̂
0
m;k +Bkv̂

0
m�1;k = ĝ0m;k;

m = 1; . . . ;M; k = �J; . . . ; J;

(3.3)

where b denotes the Fourier transform and M + 1 and 2J + 1 are the number of nodes of the
Cartesian grid along x and y, respectively. Explicit expressions for the entries of the 8� 8 matrices
Ak and Bk, as well as the de�nitions of the eight-component vectors of unknowns v̂0m;k and RHS's

ĝ0m;k are given in [25]. Boundary conditions for the AP at x = 0 and x = X are imposed on Fourier
components of the solution separately for each wavenumber k as
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Q
j�s(k)j>1

(Qk � �s(k)I) v̂
0
0;k = 0; k = 0; �1; �2; . . . � J;(3.4a)

Q
j�s(k)j�1

(Qk � �s(k)I) v̂
0
M;k = 0; k = 0; �1; �2; . . . � J;(3.4b)

where Qk = A�1
k Bk in (3.4), I is the identity matrix and �s(k); s = 1; . . . ; 8, are the eigenvalues

of Qk (to be found numerically in practice).
Boundary conditions (3.4) are the principal part of the formulation of AP. Since the RHS is

compactly supported, we may formally consider (3.3) for m < 0 and for m > M as a homogeneous
system of ordinary di�erence equations, which has (exponentially) increasing, as well as decreasing,
eigensolutions. Then, condition (3.4a) prohibits at x = 0 (m = 0) all modes that do not decrease
to the left (in
ow direction), and condition (3.4b) prohibits at x = X (m = M) all modes that
increase to the right (out
ow direction), see [25].

We now introduce the following concept of convergence. (i) The continuous AP can be for-
mulated in a natural manner analogous to the di�erence AP (see [25]). (ii) The convergence of
a di�erence solution to a continuous one is considered only on any �nite subset (rectangle) of the
type (0; X) � (��y; �y) � Din, �y < Y=2, rather than on the whole D0

Y . (iii) We consider con-
vergence not only while the grid size vanishes but also while the period Y synchronously grows
(see [25]), namely, (hx; hy ; Y ) �! (0; 0; +1). Note that the growth of the period Y implies
that we proceed from periodic functions to nonperiodic ones; the latter are de�ned on an in�nite
strip (0; X)� (�1; +1). We require that these nonperiodic functions be bounded on the strip
0 � x � X , absolutely integrable and representable as a Fourier integral along y for any x, which,
in particular, means that they vanish along any line x = const, u(x; y) �! 0 as y �! �1,
u = (u; v; p; �). By virtue of boundary conditions (3.4), we expect that the solution of the dif-
ference AP should converge on any rectangle (0; X) � (��y; �y) to the corresponding fragment of
such a solution to the nonhomogeneous counterpart of (3.2a) that satis�es (3.2b). (The RHS that
would make (3.2a) nonhomogeneous is compactly supported.) Therefore, we can choose the values
hx, hy , and Y such that the AP solution obtained in D0

Y for some compactly supported RHS will
be arbitrarily close on (0; X)� (��y; �y) � Din to a function that can be (smoothly and uniquely)
complemented on the entire R2 to the vanishing at in�nity solution of the inhomogeneous counter-
part to (3.2a) that is generated by the same RHS. A detailed discussion of the type of convergence
introduced above, as well as some estimates connecting hx, hy and Y , are contained in [25].

In summary, we can say that instead of analytically transferring the boundary conditions from
in�nity to some closed �nite boundary (e.g., the circle in (1.5) or the sphere in (2.3)), we now
semi-analytically transfer boundary condition (3.2b) from in�nity to @D0

Y (see Figure 3.1) so that
the solution to the AP on any �xed neighborhood of Din can be as close to the solution of the
inhomogeneous system (3.2a) (with the same compactly supported RHS) as desired. Clearly, con-
sideration of the convergence only on some �nite neighborhood of Din presents no loss of generality
from the standpoint of constructing the DPM-based ABC's. Indeed, this neighborhood can always
be chosen to entirely contain �1, and the BEP is always formulated with respect to a function
concentrated near �. Therefore, the ABC's obtained on the basis of the AP formulated above can
be expected to be arbitrarily close to the exact ABC's. In other words, these ABC's meet the
aforementioned fundamental requirement: one should be able to uniquely complement the solution
calculated inside the �nite computational domain to its in�nite exterior so that the original problem
is solved within the desired accuracy.

The solution to the di�erence AP can be easily computed by means of the Fourier technique.
The type of boundary conditions (3.4) (which are imposed separately for each wavenumber k) makes
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this choice of numerical method most appropriate. In so doing, one must solve system (3.3){(3.4)
for all k, k = �J; . . . ; J . We now brie
y describe the fast algorithm for solving (3.3){(3.4); this
algorithm is delineated by Ryaben'kii and Tsynkov [91].

Denote by C the linear space of eight-component complex-valued vectors; v̂0m;k 2 C, ĝ0m;k 2 C
8m; k. Conditions (3.4a) and (3.4b) select the subspaces C� � C and C+ � C, respectively;
clearly, C� \ C+ = 0, C = C� � C+. Those solutions to the homogeneous counterpart of (3.3)
that decrease as m �! �1 belong to C� at each node. Analogously, those solutions to the
homogeneous counterpart of (3.3) that do not increase as m �! +1 belong to C+ at each node.

Since the algorithm for solving (3.3){(3.4) is the same for all k, k = �J; . . . ; J , we drop the
subscript k hereafter (as well as the \hat" b and the superscript 0, for simplicity).

Let us now specify vl0 = 0 (the superscript l means left) and \integrate" (3.3) from left to right,

v0
l
m = �Qvlm�1 +A�1gm; m = 1; . . . ;M;(3.5a)

implementing the projection

vlm = v0
l
m � v00

l
m; vlm 2 C+; v00

l
m 2 C�;(3.5b)

onto the subspace C+ at each step. Clearly, for any v0lm the representation v0lm = vlm + v00lm (see
(3.5b)) is unique. Analogously, let vrM = 0 (the superscript r means right) and \integrate" (3.3)
from right to left,

v0
r
m�1 = �Q�1vrm +B�1gm; m = M; . . . ; 1;(3.6a)

vrm�1 = v0
r
m�1 � v00

r
m�1; vrm�1 2 C�; v00

r
m�1 2 C+:(3.6b)

Representation (3.6b) is also unique (for any v0rm�1).
The following proposition has been proven in [91]:

Proposition 3.1. The vector-function vm
def
= vrm + vlm, 0 < m < M , is the solution to (3.3)

that satis�es (3.4).
The stability of the computational process (3.5){(3.6) has been justi�ed in [91] as well. It is

also important to note that procedures (3.5) and (3.6) are both numerically cheap because they
each require only two eighth-order matrix-vector multiplications at each step. The total cost is,
therefore, O(M) operations for each k, k = �J; . . . ; J .

As soon as we formulate an AP with the desirable behavior of the solution in the far �eld
and develop the numerical algorithm for solving this AP, further construction of the generalized
potential, the BEP, and �nally, the ABC's, is straightforward. Basically, to obtain the discrete
BEP the same steps that were described in Section 2 for the continuous Laplace equation should
be repeated here for the speci�c �nite-di�erence analogue to (3.2a). Then, the BEP is solved by
means of some variational technique. In other words, for any distribution of u, v, p, and � along
�, we �nd a continuation of these data to the grid boundary 
 that satis�es the BEP. Since the
continuation from � to 
 is constructed on the basis of the Taylor expansion, then by solving the
BEP we simply express normal derivatives of the solution on � in terms of boundary values of the
solution itself. Finally, we use the grid density obtained (i.e., the solution to the BEP) to construct
the generalized potential; the values of this potential are then interpolated from the Cartesian AP
grid to �1. This process provides us with the desirable ABC's, details of the procedure brie
y
described above can be found in [1, 25]. We only note that because the entire procedure is based
on the linear formulation of the problem, the ABC's can be �nally obtained in a matrix form
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u
���
�1

= Tu
���
�
;(3.7)

which makes their implementation simple from an algorithmic standpoint and convenient for prac-

tical computing. In (3.7), u
���
�
represents the entire vector of u, v, p, and � along �, u

���
�1

represents

an analogous vector of unknowns along �1, and T is the operator (matrix) of boundary conditions
that is calculated on the basis of the solution to the corresponding di�erence BEP.

Let us now make a few remarks. First, formulation of the problem presented above deals with
the true molecular Reynolds number and, therefore, does not account for turbulence. However,
turbulent 
ows are undoubtedly most interesting for applications. Therefore, we qualitatively
describe the far-�eld turbulent 
ow as a laminar 
ow of model 
uid with a new \e�ective" viscosity
(Boussinesq). An e�ective viscosity is chosen so that the corresponding model laminar solution
coincides in the far �eld with an original turbulent wake-type solution. We also use Clauser's
conjecture to obtain a speci�c value of the constant in the expression for the e�ective viscosity and
Tucker's conjecture to account for the compressibility. A detailed description of this approximate
approach for treating the turbulence in the far �eld can be found in the work of Tsynkov, Turkel,
and Abarbanel [90]. Numerical results from [90] corroborate the statement that if applied in the far
�eld the concept of e�ective turbulent viscosity can provide accurate computations without making
the ABC's more cumbersome.

Second, the computation of boundary condition (3.7) (more precisely, the computation of
matrix T from (3.7)) can be easily parallelized on a multi-processor machine. Indeed, the one-
dimensional di�erence boundary-value problems (3.3){(3.4) that correspond to di�erent wavenum-
bers k are obviously independent; therefore, they can be solved simultaneously on di�erent pro-
cessors of a parallel computer. This approach was practically implemented on an eight-processor
CRAY Y-MP; such a parallelization appears to reduce the wall-clock time required for calculation
of ABC (3.7) by approximately a factor of 5.

Third, rather than using the uniform grid and the discrete Fourier transform with respect to y,
the stretched grid and, accordingly, the expansion with respect to a skew basis can be implemented.
Numerical experiments (see below) indicate that with this approach high accuracy of the �nal results
can still be maintained and, at the same time, the computer e�ort required to calculate the ABC's
can be drastically decreased.

Referring the reader to the original papers [25], [1], [90], and [91] for more details regarding the
construction of the DPM-based ABC's for viscous 
ow computations, we now present some results of
the numerical experiments with boundary conditions (3.7). We have combined the ABC (3.7) with a
second-order �nite-volume code [26, 27, 28] by Jameson, Schmidt, Turkel, and Swanson. The code is
intended for calculating steady solutions to the Navier-Stokes equations; it uses multigrid iterations
based on Runge-Kutta time stepping. The original (henceforth referred to as standard) treatment of
the external boundary in the code [26, 27, 28] is local; this treatment is based on the extrapolation
of characteristic and/or physical variables; the point-vortex correction can be employed as well.
We have conducted a series of computations for di�erent subsonic and transonic, laminar and
turbulent 
ows around di�erent airfoils. The results obtained in using the nonlocal ABC (3.7) were
compared with those obtained on the basis of standard local boundary conditions with or without
the point-vortex correction. The parameters of the speci�c computational variants, as well as the
corresponding results, are reported in [1, 90]. The general conclusion that can be drawn from
analyzing these results is that the nonlocal DPM-based ABC's enable one to essentially shrink (by
more than a factor of 10) the computational domain preserving the accuracy of computations or,
conversely, to noticeably improve the accuracy for a �xed domain, i.e., keeping the computational
cost at the same level.
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In Table 3.1, we show some recent results that are not included in our previous work. Here,
we compare the solutions (speci�cally, the dynamic lift Cl, dynamic drag Cd, and full drag CD

coe�cients of a lifting airfoil under the non-zero angle of attack �) obtained for computational
domains of di�erent sizes and for di�erent types of ABC's, namely, nonlocal boundary conditions
(3.7) and the point-vortex model. (For convenience, Table 3.1 presents both the actual values of
Cl, Cd, and CD and the relative errors with respect to the corresponding asymptotic value; the
latter is calculated for a domain with an \average radius" of 50 chords for each type of the ABC's.)

Table 3.1

Comparison with point-vortex (p.-v.) model for RAE2822 airfoil; M0 = 0:73; Re0 = 6:5 � 106; � = 2:79�; basic
grid 640 � 128 nodes; normal spacing 0:5 � 10�5.

Domain \radius" 3 chords 8 chords 50 chords

Grid 600� 104 608� 112 640� 128

Type of ABC' p.-v. (3.7) p.- v. (3.7) p.-v. (3.7)

Cl 0.8653 0.8591 0.8624 0.8589 0.8603 0.8593

relative error 0.58% 0.02% 0.24% 0.04% 0% 0%

Cd � 10 0.1203 0.1263 0.1209 0.1261 0.1255 0.1260

relative error 4.14% 0.24% 3.67% 0.08% 0% 0%

CD � 10 0.1755 0.1816 0.1762 0.1815 0.1810 0.1815

relative error 3.04% 0.05% 2.65% 0% 0% 0%

One can easily see that the asymptotic (50 chords) values of Cl, Cd, and CD that correspond to
the di�erent types of ABC's are close to one another. However, as the arti�cial boundary approaches
the airfoil, the discrepancy between the results produced by the two types of boundary conditions
grows. We emphasize that the lift coe�cients for both types of ABC's are fairly stable with respect
to the change in the size of the computational domain. As concerns the drag coe�cient, it remains
stable only for nonlocal ABC's (3.7) (which are close to the exact ABC's) and deteriorates for
the point-vortex boundary conditions. This behavior is reasonable because lift actually drives the
point-vortex model and drag is not taken into account by this model at all.

Another important aspect of implementation of nonlocal ABC's (3.7) is the in
uence they exert
on the convergence rate of the multigrid iteration procedure. For some computational variants, the
convergence for the DPM-based boundary conditions is up to 3 times faster than the convergence
for a standard local technique. An example is shown in Figure 3.2, in which convergence dynam-
ics relevant to the two types of ABC's for the computation of a laminar subsonic 
ow past the
NACA0012 airfoil are compared. Other examples can be found in [1, 90].

Finally, we note that boundary conditions (3.7) may also improve the robustness of the entire
computational procedure. Indeed, the original iteration procedure [26, 27, 28] is rather sensitive
to a number of factors that in
uence convergence (e.g., some geometric properties of the grid, as
well as some iteration parameters). For certain computational variants, nonlocal ABC's (3.7) can
ensure good convergence when the standard procedure simply fails to converge. Again, speci�c
examples can be found in [1, 90].

We should also note that the computational cost of ABC's (3.7) themselves is not high. Gener-
ally, this expense never exceeds 10% of the overall cost of the computation. Clearly, in the case of
strong convergence acceleration much can be gained from using the DPM-based ABC's. However,
even if the convergence acceleration is not as drastic as that shown in Figure 3.2, an additional 10%
is still an acceptable cost increase if one takes into account the possibility to improve the accuracy
and to use smaller computational domains.

Summarizing our experience in developing and implementing nonlocal DPM-based ABC's, we
can say that the approach appears most promising in constructing e�ective and robust numerical
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Fig. 3.2. Convergence history (log k�residualkL1 versus number of multigrid cycles) for NACA0012 airfoil;
M0 = 0:63; � = 2�; Re = 5000; average radius of computational domain is approximately 6 chords.

algorithms for solving external 
ow problems. The geometric universality of this method along
with the algorithmic simplicity of its implementation on one hand, and the high accuracy of the
obtained results on the other hand can make it an e�ective tool in modern CFD.

There are several possible extensions of the described approach. The one most demanded
by current computational practice is an extension to 3D steady-state 
ows. Although relevant
experiments have not yet been conducted, such an extension seems feasible. The general framework
of the algorithm would remain the same. As concerns the technical portion, it would certainly
become more cumbersome in particular because of the need to consider 2D surfaces rather than
1D curves as arti�cial boundaries. However, highly accurate and robust ABC's may be even more
crucial for computations in three dimensions than in two dimensions since in three dimensions there
are, generally speaking, no simple models, such as the point-vortex model, that can noticeably
improve the results provided by standard local techniques.

Another interesting area is the combined implementation of nonlocal ABC's and multigrid
iteration procedures. As mentioned above, our computations [1] and the computations by Ferm
[24] con�rm that the nonlocal ABC's can be particularly e�ective if used in combination with
multigrid. However, many modern multigrid techniques in CFD are often not optimal themselves.
A massive e�ort is currently underway toward the construction of new discretizations that may
improve the e�ciency of multigrid solvers. Development of highly accurate boundary conditions
may essentially contribute to achieving this goal.

However, the most challenging problem in our opinion is the extension of the DPM-based
approach to the treatment of unsteady 
ows. A particular class of such problems, speci�cally,
the 
ows that oscillate in time, has been studied by Tsynkov [92]. In practice, this formulation
originates from the well-known problem of an oscillating airfoil or from the problem of the time-
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periodic injection of 
uid into the boundary layer, which according to the experimental data of
Seifert et al. [93] may essentially improve the performance of airfoil. In [92], we linearize the
governing equations in the far �eld and then, since the main frequency is known, implement the
Fourier transform in time. If the problem is already discretized in time, then we end up with a
�nite family of steady-state problems (generally speaking, with complex coe�cients); each of these
problems can be treated in a way analogous to the one described above. Additionally, we provide
in [92] a more thorough study of the solvability of AP and propose a new technique for practically
setting the DPM-based ABC's; this new technique does not require solution of the BEP. Obviously,
the nonlocal character of the ABC's [92] in time is restricted by the value of one period. Moreover,
the theoretical analysis in [92] is in a sense less cumbersome than the analysis in [17] because at
the end we deal with stationary rather than general time-dependent equations. Therefore, we can
say that the time-periodic case occupies an intermediate position between steady-state and truly
time-dependent problems. In regard to the latter, the primary di�culty is how to e�ectively \cut
o� the tail" in time. This issue is the subject of a future investigation.
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